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Abstract

A new concept of a layerwise optimization approach (LOA) is proposed to optimize vibration behavior
for the maximum natural frequency of laminated composite plates. Design variables are taken to be the
fiber orientation angles in all N layers. This usually causes a rapid increase in computation time due to the
search for optimum solutions in the N-dimensional space. The LOA makes possible this multi-dimensional
optimization into only N times repetition in a one-dimensional search. The idea is based on the physical
consideration that the outer layer has more stiffening effect than the inner layer in the bending of plates and
is more influential in determining the natural frequency. In numerical examples, a Ritz method is employed
to calculate the natural frequencies of laminated rectangular plates under any combination of the three
classical edge conditions. Results are corroborated by comparing with other optimum solutions available in
the literature.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laminated fibrous composite plates are finding a wide range of applications in structural
design, especially for light-weight structures that have tight stiffness and strength requirements.
They are attractive replacements for conventional metal plates but their analysis and design are
more complex than isotropic metal plates due to material anisotropy. Furthermore, the light-
weight structures are often exposed to severe vibration circumstances and the consideration for
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optimizing anti-resonance performance (e.g., by maximizing the natural frequency) becomes more
important than before in composite structural design.
The literature survey shows that the free vibration of flat plates has been extensively studied in

the past, and various textbooks and monographs have appeared on vibration of isotropic plates
[1–3] and on composite plates [4,5]. However, previous references on the optimization of vibrating
composite plates are quite limited [6–9] and deal with only certain stacking and boundary
conditions. The reason for the limited references is that the problem involves two complicated
aspects of the plate vibration analysis and the optimization technique used. Particularly, the
computational difficulty consists in that, when one relates a fiber orientation angle of each layer
directly to a corresponding design variable in the N-layered plate, one has N design variables and
must look for optimum solutions in the N-dimensional space. This requires a larger amount of
computation time as the plate has an increased number of layers. Although there is a different
approach to introducing a set of the lamination parameters [10] as intermediate parameters to
avoid an increase of solution search time, this requires another complicated mathematical process,
or alternatively a graphical technique in a simple case, in order to determine specific fiber
orientation angles from the parameters.
A layerwise optimization approach (LOA) presented here is approximate and simple, yet quite

an effective, optimization approach. This is based on the physical observation that the outer layer
has more stiffening effect than the inner layer in bending of laminated plates, and therefore the
outer layer is considered to be a more influential factor in determining the maximum natural
frequency of the plate. Then the assumption for LOA is introduced as ‘‘The optimal stacking
sequence for the maximum natural frequency of laminated plate can be determined sequentially in
the order from the outermost to the innermost layer’’.
On the other hand, it is known that natural frequencies of flat plates are significantly affected by

edge constraints, which are modelled typically by one of the boundary conditions of free, simply
supported and clamped edges. There are a wide variety of combinations along the entire boundary
of a rectangle when an edge constraint is independently assumed along each of the four edges [11].
Since LOA is independent of methods for calculating natural frequencies, one can use any method
including the finite element method. In the present numerical examples, a modified Ritz method
[12,13] is employed to calculate the natural frequencies of laminated rectangular plates under
various combinations of the three boundary conditions. Accuracy of the present Ritz-based
approach in calculating frequencies has already been established [14]. The present optimum
solutions are corroborated by comparing with reference frequencies for typical stacking sequences
and other optimum solutions obtained by the complex method [15].

2. Definition of the problem

Fig. 1 shows a laminated rectangular plate in the co-ordinate system o-xy and in each layer the
major and minor principal material axes are denoted by the L and T axes. The dimension of the
whole plate is given by a� b� h (thickness). The plate considered is limited to symmetric
laminates, and the total number of layers is redefined as 2N (i.e., N layers in the upper (lower) half
cross-section). Free vibration of such symmetrically laminated thin plates is governed in the
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classical plate theory by
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where w is the deflection and r is a mean mass per unit area of the plate. The Dij (i, j=1,2,6) are
the bending rigidities of the symmetric laminate defined by

Dij ¼
2
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with zk being a thickness co-ordinate measured from the middle surface. The %Q
ðkÞ
ij are elastic

constants in the kth layer, obtained from
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(superscript (k) is omitted) by considering a fiber orientation angle y(k) in the layer [4,5]. The EL

and ET are moduli of longitudinal elasticity in the L and T directions, respectively, GLT is a shear
modulus and nLT is the Poisson ratio.
Natural frequency is normalized as a frequency parameter

O ¼ oa2
r

D0

� �1=2

; ð4Þ

where o is a radian frequency of vibration and D0=ETh3/12(1�nLTnTL) is a reference bending
rigidity. The frequency parameter for the lowest (fundamental) mode is used as the objective
function and is maximized in the present optimization. The design variables are taken to be a set

Fig. 1. Laminated composite rectangular plate and co-ordinate system.
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of fiber orientation angles in the N layers of the upper (lower) half of the cross-section:

½yð1Þ=yð2Þ=y=yðkÞ=y=yðNÞ�s; ð5Þ

where y(k) is a fiber orientation angle in the kth layer (k=1: outermost, k=N: innermost) and the
subscript ‘‘s’’ denotes symmetric lamination. This approach of using each fiber orientation angle
directly as a design variable is straightforward but the number of design variables increases in
proportion to the number of layers, resulting in the optimization of the multi-dimensional search
problem.
The present LOA attempts to avoid this intensive computational problem by making use of the

following physical observation:

In bending of plates, the outer layer has more stiffening effect than the inner layer and is more
influential on the natural frequency

This well-known physical fact suggests that the outer layer plays a more decisive role in
determining the maximum frequency of laminated plates. Based on this consideration, the next
assumption in optimization is proposed:

The optimum stacking sequence ½yð1Þ=yð2Þ=y=yðNÞ�S;opt for the maximum fundamental natural
frequency of laminated plates can be determined sequentially in the order from the outermost
to the innermost layer.

The following algorithm is designed on this assumption and is proposed:

Step 0. Assume a laminated plate made of N layers in the upper (also in the lower) half with an
elastic constant of E=ET in every direction (the value of an elastic constant in the direction
perpendicular to the fiber in an orthotropic lamina).

Step 1. Find yð1Þopt in one-dimensional search to make the maximum fundamental frequency Oð1Þ
opt

of the laminated plate with an orthotropic lamina in the 1st layer (outermost). The other inner
(N�1) layers are still those with E=ET in every direction.

Step 2. Find yð2Þopt in one-dimensional search to make the maximum fundamental frequency Oð2Þ
opt of

the laminated plate with an orthotropic lamina in the 2nd layer and that in the 1st orthotropic layer
with yð1Þ ¼ yð1Þopt: The inner (N�2) layers other than the two surface layers are still those with E=ET.
....(this process is applied repeatedly to y(3),y(4),...)
Step N. Find yðNÞ

opt to make the maximum OðNÞ
opt of the laminated plate with an orthotropic lamina

in the Nth layer (innermost). This step determines an optimum solution [y(1)/y(2)/y/y(N)]S,opt that
yields the maximum frequency Oopt ¼ OðNÞ

opt of the optimized plate.

Solutions thus obtained are not guaranteed to be globally optimum in the exact mathematical
sense, but are expected to be optimum or nearly optimum. Steps 1–N may be repeated to seek for
the improved set of solutions by using [y(1)/y(2)/y/y(N)]S,opt as an initial solution in Step 0.

3. Free vibration analysis of laminated plates

Since the present design approach (LOA) is independent of vibration analysis methods, one can
use any analytical or numerical method, such as the finite element method including commercial
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FEM codes, in calculating natural frequencies. In this paper, a semi-analytical solution is used
[12,13], because this solution has a low computational cost and ease in varying design parameters.
It also has good accuracy and fast convergence behavior for various sets of boundary conditions
[14].
For the small amplitude (linear) free vibration of a thin plate, the deflection w may be written as

wðx; y; tÞ ¼ W ðx; yÞ sinot; ð6Þ

where W is the amplitude. Then, the maximum strain energy due to the bending is expressed by

Umax ¼
1
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The maximum kinetic energy is given by

Tmax ¼
1

2
ro2

Z Z
A

W 2 dA: ð9Þ

In the Ritz method, the amplitude is assumed in the form

W ðx; yÞ ¼
XM�1

m¼0

XN�1

n¼0

AmnXmðxÞYnð yÞ; ð10Þ

where Amn are unknown coefficients, and Xm(x) and Yn( y) are the functions modified so that any
kinematical boundary conditions are satisfied at the edges with ‘‘boundary indices’’ [12,13].
After substituting Eq. (10) into the sum of energies (7) and (9), the stationary value is obtained

by

@

@Amn

ðTmax � UmaxÞ ¼ 0 ð %m ¼ 0; 1; 2;y; %n ¼ 0; 1; 2;yÞ: ð11Þ

The minimizing process gives a set of linear simultaneous equations in terms of the coefficients
Amn, and the eigenvalues O may be extracted by using existing computer subroutines. This
analytical procedure is a standard routine of the Ritz method but the special form of polynomials
can satisfy kinematical boundary conditions [12,13].

4. Results and discussions

4.1. Numerical example

Frequency parameters are calculated by the frequency equation derived from Eq. (11). The
elastic constants used in the following examples taken for graphite/epoxy composite [5] are

G=E material : EL ¼ 138 GPa; ET ¼ 8:96 GPa; GLT ¼ 7:1 GPa; nLT ¼ 0:30: ð12Þ
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In the convergence tests previously reported [13,14], it was clearly seen that the frequencies
monotonically decrease from above as the number of terms is increased in Eq. (10) and converge
almost within four significant figures when M=N=10 in the series are taken. The frequencies
were therefore calculated thereafter by using M�N =10� 10 solutions.
Numerical examples are given for symmetrically laminated 8-layered square (a/b=1) and

rectangular (a/b=2) plates. The design variables are presented in the usual notation as
½yð1Þ=yð2Þ=yð3Þ=yð4Þ�s; where y

(1) is the fiber orientation angle of the 1st layer (outermost) and y(4) is
that of the 4th layer (innermost) located on the middle surface of the plate. The boundary
conditions of plates are given for free (F), simply supported (S) and clamped (C) edges, and the

Fig. 2. Optimization process by the layerwise optimization approach for symmetric 8-layered plate (Hypo.layer: use

E=ET of G/E material, shaded area: use EL and ET of G/E material).

Fig. 3. Variation of the frequency parameter in the optimization process of symmetric 8-layered square plate

(FCFF(cantilever), a/b=1).
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notations F, S and C are used in the order they occur in Edge(1), (2), (3) and (4) (see Fig. 1 to
check the edge notation). For example, the SCFF plate indicates a rectangular plate with simply
supported edge at Edge(1), clamped edge at Edge(2) and free edges on the remaining two edges.
In the application of LOA, as shown in Step 0 of Fig. 2, the upper (lower) four layers are first

assumed to have the constants

E ¼ ET ¼ 8:96 GPa; GLT ¼ 7:1 GPa; nLT ¼ 0:30: ð13Þ

Those hypothetical layers have identical elastic constant E=ET=8.96GPa in every direction but
cannot be real isotropic material due to lack of relation G ¼ E=2ð1þ nÞ:
In Step 1, the first layer is replaced by the orthotropic G/E layer with the constants (12) and the

optimum fiber orientation angle yð1Þopt is searched sequentially by changing y(1) with an increment

Table 1

Examples in the optimization process for symmetric 8-layered square plates with various boundary conditions (a/b=1,

increment 5�)

Present [y(1)/y(2)/y(3)/y(4)]s O

(a) SSFF plate

Step 1 ½�45= � = � =��s 7.782

Step 2 ½�45=45= � =��s 10.71

Step 3 ½�45=45=� 45=��s 11.20

Step 4 [�45/45/�45/45]s 11.28

Ref. [15] [�45/45/�45/45]s 11.28

(b) SSCF plate

Step 1 ½�5= � = � =��s 48.33

Step 2 ½�5=0= � =��s 57.90

Step 3 ½�5=0=� 5=��s 61.05

Step 4 [�5/0/�5/�5]s 61.49

Ref. [15] [�2/�4/�2/�5]s 61.54

(c) SSSS plate

Step 1 ½45= � = � =��s 38.62

Step 2 ½45=� 45= � =��s 52.70

Step 3 ½45=� 45=� 45=��s 55.90

Step 4 [45/�45/�45/�45]s 56.32

Ref. [15] [45/�45/45/�45]s 55.30

(s) CCCC plate

Step 1 ½0= � = � =��s 75.66

Step 2 ½0=90= � =��s 88.73

Step 3 ½0=90=90=��s 93.06

Step 4 [0/90/90/90]s 93.67

Ref. [15] [0/90/0/90]s 93.69
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y=5� from �90� to 90�. One can use finer increment, e.g., y=2.5� or 1�, depending upon the
solution accuracy desired. In Step 2, the yð2Þopt is searched for the plate where the first layer has the
fiber angle of yð1Þopt and the 2nd layer is replaced by the G/E layer. This process continues and the
optimization is terminated after yð4Þopt is determined in Step 4.
The advantage of LOA in computation time is obvious in the numerical example. When one

looks for the maximum fundamental frequency Oopt by examining all combinations of [y(1)/y(2)/
y(3)/y(4)]s with an increment y=5�, one needs to calculate frequencies for 374=1874 161
combinations. In LOA, one calculates for only 37� 4=148 combinations. This ends up with the
reduction to 148/374=4/373A0.008 percent of the computation time.

4.2. Square plate

Fig. 3 presents for illustrative purposes a set of variations in the frequency parameter during the
optimization process. This symmetric 8-layered square plate is clamped at Edge(2) and is free on
other edges. Because the lowest mode of the cantilever plate is the first bending mode of beam
type, it is clear to have the optimum solution [90�/90�/90�/90�]s (‘‘

�’’ is omitted hereafter). It is
seen in the figure that the frequency rapidly increases in Step 1 as y(1) approaches from 0 to 90,
and then the increase in frequency is reduced in Step 2. The 4th layer (innermost) practically does
not change the frequency value.

Table 2

Optimum solutions for symmetric 8-layered square plates with various boundary conditions (BC) (a/b=1,

increment 5�)

BC [y(1)/y(2)/y(3)/y(4)]S,opt Oopt

(1) FFFF [65/�50/20/25]s 35.83

(2) SFFF [55/�45/�55/35]s 20.88

(3) CFFF [0/0/0/0]s 13.79

(4) SSFF [�45/45/�45/45]s 11.28

(5) SCFF [75/�50/65/65]s 16.28

(6) CCFF [65/�35/40/40]s 18.80

(7) SFSF [0/0/0/0]s 38.69

(8) SFCF [0/0/0/0]s 60.47

(9) CFCF [0/0/0/0]s 87.77

(10) SSSF [0/0/0/0]s 39.84

(11) SCSF [0/0/0/0]s 40.28

(12) SSCF [�5/0/�5/�5]s 61.49

(13) SCCF [�5/�5/0/0]s 61.88

(14) CSCF [0/0/0/0]s 88.41

(15) CCCF [0/0/0/0]s 88.63

(16) SSSS [45/�45/�45/�45]s 56.32

(17) SSSC [90/75/�60/�60]s 65.27

(18) SSCC [0/45/�45/�45]s 68.72

(19) SCSC [90/90/90/90]s 90.89

(20) CCCS [0/0/0/0]s 91.99

(21) CCCC [0/90/0/90]s 93.67
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The optimization process of determining y(k) sequentially from outer layers is also seen, in
Table 1, for (a) SSFF, (b) SSCF, (c) SSSS and (d) CCCC plates. The same tendency, as found in
Fig. 3, that the outer layer is more effective in increasing the frequency is obvious for plates with
those boundary conditions. It is also seen that the present optimum solutions coincide well with
those of Ref. [15]. The complex method, which needs considerable amount of computation time,
was employed in this reference.
Table 2 presents optimum solutions obtained by LOA for symmetric 8-layered square plates

with 21 different combinations of boundary conditions. Since constraints are generally added to
the edges from cases (1)–(21), the maximum fundamental frequencies Oopt generally increase in
order. The first two cases (1) FFFF and (2) SFFF are exceptional in the sense that they show rigid
body motions and the lowest elastic vibration modes have higher frequency values than the cases
in (3) CFFFB(6) CCFF.

Fig. 4. Comparison between the optimum frequency Oopt and frequencies of symmetric 8-layered square plate for

various stacking sequences (a/b=1):’, present optimum frequency Oopt;~, [0/0/0/0]s;B, [0/90/0/90]s; m, [30/�30/30/
�30]s; n, [45/�45/45/�45]s; 
, [0/�45/45/90]s (quasi-isotropic).
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To validate optimality of the obtained solutions, comparison is made in Fig. 4 to see that the
plates with the present optimum solutions [y(1)/y(2)/y(3)/y(4)]S,opt actually give higher frequencies
than those with other stacking sequences. Typical stacking sequences of the symmetric 8-layered
plates are chosen for comparison as [0/0/0/0]s, [0/90/0/90]s, [30/�30/30/�30]s, [45/�45/45/�45]s
and [0/�45/45/90]s. The first two (i.e., [0/0/0/0]s are [0/90/0/90]s) are macroscopically specially
orthotropic, and are denoted by ~ and B, respectively. The next two ([30/�30/30/�30]s and [45/
�45/45/�45]s) are alternating angle-ply sequence, denoted by m and W. The last one ([0/�45/45/
90]s) is a quasi-isotropic case, denoted by 
. It is observed that almost all the present optimum
solutions (denoted by ’) yield higher frequencies than those of plates with the five typical
stacking sequences.
Only one exception in the figure is the case of (18) SSCC. The present solution [0/45/�45/�45]

gives O=68.72 while an angle-ply sequence [45/�45/45/�45]s gives slightly higher value of
O=71.21. This fact indicates that there is a slight possibility that the present LOA may fall into
local optimums.

4.3. Rectangular plate

Table 3 presents the present solutions for symmetric 8-layered rectangular plates (a/b=2) with
21 different combinations in boundary conditions, in the same format as Table 2. Tendency of

Table 3

Optimum solutions for symmetric 8-layered rectangular plates with various boundary conditions (BC) (a/b=2,

increment 5�)

BC [y(1)/y(2)/y(3)/y(4)]S,opt Oopt

(1) FFFF [0/�35/45/40]s 61.79

(2) SFFF [5/�40/50/45]s 32.23

(3) CFFF [0/0/0/0]s 13.79

(4) SSFF [�35/45/�45/45]s 21.89

(5) SCFF [85/85/85/85]s 57.06

(6) CCFF [85/85/85/85]s 57.71

(7) SFSF [0/0/0/0]s 38.66

(8) SFCF [0/0/0/0]s 60.44

(9) CFCF [0/0/0/0]s 87.74

(10) SSSF [0/�30/40/35]s 45.26

(11) SCSF [90/70/�55/�55]s 61.94

(12) SSCF [�10/0/�5/25]s 64.84

(13) SCCF [�10/65/�35/�35]s 69.88

(14) CSCF [0/0/0/0]s 90.28

(15) CCCF [0/0/0/0]s 92.28

(16) SSSS [90/90/90/90]s 159.9

(17) SSSC [90/90/90/90]s 245.7

(18) SSCC [90/90/90/90]s 246.4

(19) SCSC [90/90/90/90]s 353.9

(20) CCCS [90/90/90/90]s 247.1

(21) CCCC [90/90/90/90]s 354.9

Y. Narita / Journal of Sound and Vibration 263 (2003) 1005–10161014



increasing frequencies, moving from case (1) to (21), is the same as in Table 2. Also (1) FFFF and
(2) SFFF have rigid body motions. It is noted that cases of (16) SSSSB (21) CCCC with strong
constraints have an identical solution of [90/90/90/90]s, because it is effective to stiffen the plates
by bridging the fibers (major principal material axis) between a short span of the opposite simply
supported or clamped edges.
The comparison is also made in Fig. 5 to see that the rectangular plates with present optimum

solutions [y(1)/y(2)/y(3)/y(4)]S,opt give higher frequencies than those with other typical stacking
sequences. The same notations ~, B, m, W and 
, as in Fig. 4, are used to indicate [0/0/0/0]s, [0/
90/0/90]s, [30/�30/30/�30]s, [45/�45/45/�45]s and [0/�45/45/90]s, respectively. Unlike the square
plate there are no exceptions and all the present optimum solutions are higher than the reference
frequencies.

Fig. 5. Comparison between the optimum frequency Oopt and frequencies of symmetric 8-layered rectangular plate for

various stacking sequences (a/b=2): ’, present optimal frequency Oopt; ~, [0/0/0/0]s; B, [0/90/0/90]s; m, [30/�30/30/
�30]s; n, [45/�45/45/�45]s; 
[0/�45/45/90]s (quasi-isotropic).
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5. Conclusions

A layerwise optimization approach (LOA) was proposed in a certain class of optimum design
problems to yield the maximum fundamental frequency of symmetrically laminated plate. For the
purpose, an assumption is introduced that the optimum stacking sequence for the maximum
frequency is determined sequentially in the order from the outermost to the innermost layer. With
this idea of LOA, the design algorithm is proposed. Numerical experiment is conducted to show
the validity and usefulness of LOA and examples are given for different aspect ratios and
boundary conditions. Only one exception was found where the LOA yields local solution but this
local solution is found to be still very close to the global solution. In all other numerical examples,
the present solutions gave the higher frequencies than the reference values. It is hoped that the
LOA will be extended as a practical optimization technique in the composite structural design.

References

[1] A.W. Leissa, Vibration of Plates, NASA-160, U.S. Government Printing Office, Washington, DC, 1969.

[2] R.D. Blevins, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, 1979.

[3] D.J. Gorman, Free Vibration Analysis of Rectangular Plates, Elsevier, New York, 1982.

[4] R.M. Jones, Mechanics of Composite Materials, Scripta, Washington, DC, 1975.

[5] J.R. Vinson, R.L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff,

Dordrecht, 1986.

[6] C.W. Bert, Optimal design of a composite material plate to maximize its fundamental frequency, Journal of Sound

and Vibration 50 (1977) 229–237.

[7] C.W. Bert, Design of clamped composite material plates to maximize fundamental frequency, Journal of

Mechanical Design (1978) 274–278.

[8] R. Reiss, S. Ramachandran, Maximum frequency design of symmetric angle-ply laminates, in: I.H. Marshall (Ed.),

Composite Structures 4, Vol. 1: Analysis and Design Studies, Elsevier, London, 1987, pp. 1476–1487.

[9] H. Fukunaga, H. Sekine, M. Sato, Optimal design of symmetrically laminated plates for the fundamental

frequency, Journal of Sound and Vibration 171 (1994) 219–229.

[10] Z. Gurdal, R.T. Haftka, P. Hajela, in: Design and Optimization of Laminated Composite Materials, Wiley-

Interscience, New York, 1999, pp. 297–310.

[11] Y. Narita, Combinations for the free-vibration behaviors of anisotropic rectangular plates under general edge

conditions, Journal of Applied Mechanics 67 (2000) 568–573.

[12] Y. Narita, Y. Ohta, G. Yamada, Y. Kobayashi, Analytical method for vibration of angle-ply cylindrical shells

having arbitrary edges, American Institute of Aeronautics and Astronautics Journal 30 (1992) 790–796.

[13] Y. Narita, Series and Ritz-type buckling analysis, in: G.J. Turvey, I.H. Marshall (Eds.), Buckling and Postbuckling

of Composite Plates, Chapman & Hall, London, 1995, pp. 33–57 (Chapter 2).

[14] Y. Narita, Closure to ‘‘Discussion of ‘Combinations for the free-vibration behavior of anisotropic rectangular

plates under general edge conditions’’’, Journal of Applied Mechanics 68 (2001) 685–686.

[15] X. Zhao, Y. Narita, Maximization of fundamental frequency for generally laminated rectangular plates by the

complex method, Transactions of JSME 63C (1997) 364–370 (in Japanese).

Y. Narita / Journal of Sound and Vibration 263 (2003) 1005–10161016


	Layerwise optimization for the maximum fundamental frequency of laminated composite plates
	Introduction
	Definition of the problem
	Free vibration analysis of laminated plates
	Results and discussions
	Numerical example
	Square plate
	Rectangular plate

	Conclusions
	References


